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Abstract. The broadening and shift of the electron localized states in non-uniform semi-
conductor alloys are studied in the effective-mass approximation. The calculation of the density
of states is carried out for the case of short-range and long-range (in comparison with the
localized-state radius) inhomogeneities of the alloy composition. The path-integral method is
used. The shape of the broadened peak of the density of localized states in the short-range case
is Lorentz-like; however, in the case of long-range inhomogeneities it is Gaussian. The results
for both cases are discussed, and compared with the experimental data.

1. Introduction

Numerous physical characteristics of both the monatomic or binary semiconductors and
semiconductor alloys are determined by the parameters of the impurity states. These states
in alloys have been widely studied during recent years (see e.g. [1–5] and references therein)
for the cases of Coulombic and short-range potential defects. The latter case is typical for
states localized on structure imperfections or on substitutional impurities. The theoretical
treatment of these states is based on a zero-radius potential model. This consideration
may be carried out within the Lucovsky model [6] for donors that are shallow enough
in comparison with the gap (so that the effects of the multi-band structure of the deep
levels, examined in [7], can be neglected). However, the examination of these states in
inhomogeneous semiconductor alloys involves the consideration of the spatial variation of
the band parameters, caused by the deviations in alloy composition (the electrical and optical
characteristics of the alloys were discussed e.g. in [8–11]). In this paper we examine the
effect of such inhomogeneities on the broadening and shift of the point defect energy levels
in the gap.

Our calculations are based on the model of the smooth (for the scale of distances of the
order of the lattice constant,a) inhomogeneity of the compositionxr. The electron states
which form the donors are treated within the framework of the effective-mass approximation.
The position of the conduction-band edge and the effective-mass parameters are considered
to change in correspondence with the change of the alloy composition. These changes of the
parameters cause broadening of the deep levels, i.e. theδ-like density of states transforms
into a form with a peak with a definite width and height. (We shall show later that the
change of kinetic energy does not crucially influence the shallow impurity states.) The
mechanism of this broadening is essentially different in the two limiting cases of the alloy
inhomogeneity1x having a correlation lengthlc much greater and much smaller than the
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664 M V Strikha and F T Vasko

localized-state radiusr0 (short- and long-range inhomogeneities). In the latter case we
obtain inhomogeneous broadening of the peak, caused by the band-edge energy variations.
In contrast, in the short-range case the random electric fields cause a shift and broadening
of the donor level (though the average fields over the impurity volume are small).

Experimental studies of donors in semiconductor alloys have been carried out using
photoconductivity (e.g. [12]) and capacitive (e.g. [2, 10, 13, 14]) methods. A semi-
phenomenological theory of the defect broadening was worked out in e.g. [5, 15, 16].
It mainly concerned the random occupation of the sites near the defect by A and A′ atoms
in the AxA′

1−xB alloy. The embedded-cluster method, with allowance made for the effects
of the first- and second-neighbour disorder in the alloys, was worked out in [17–19]. In
contrast, our examination will take into account the macroscopic inhomogeneity of the
alloy composition (the correlation lengthlc may be of the same order of magnitude as the
localized-state radiusr0, and much greater thana). This approximation treats the level
broadening in terms of small deviations of the alloy from the ‘virtual-crystal’ model [20].
The approach worked out here is based on a combination of the Slater–Koster model [21]
and the path-integral method [22].

The background theoretical expressions are given in section 2 of this paper. They are
applied to the cases of short-range and long-range inhomogeneities in sections 3 and 4
respectively. The discussion of the results obtained and a comparison with the experimental
data are presented in the last section.

2. Theoretical background

The electronic states in semiconductor alloys with spatial inhomogeneity of the composition
are described by the Hamiltonian

Ĥ = 1

2
(p · m−1

r p) + Ur. (1)

Here mr and Ur are the inhomogeneous effective mass and the conduction-band-bottom
energy. By adding into equation (1) the potential energy of the random ensemble of
impurities, we get the equation for the Green’s function of the electron:[

Ĥ +
∑

α

u0 1(r − Rα) − ε

]
Gε(r, r′) = δ(r − r′). (2)

Here u0 1(r) is the potential energy of the impurity at the zero point of the coordinates
(1(r) is a short-rangeδ-like function, localized in a volume whose magnitude is of the
order ofa3), andRα is the random coordinate of theα-impurity. For the Green’s function
of the electron in the alloy (without impurities) we can write the equation

(Ĥ − ε)Gε(r, r′) = δ(r − r′). (3)

With the use of equation (3) we may rewrite equation (2) in the integral form

Gε(r, r′) = Gε(r, r′) − u0

∑
α

lim
r1→Rα

Gε(r, r1)Gε(r1, r
′). (4)

The functionGε(Rα, r′) in the right-hand side of equation (4) corresponds to a system of
algebraic equations containingGε(Rα, Rβ). If the radius of the localized state examined is
much smaller than the interdefect distance, then the contribution fromGε(Rα, Rβ) in the
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case whereα 6= β is exponentially small, and these terms can be neglected. This yields

Gε(Rα, r′) = Gε(Rα, r′)

1 + u0G̃ε(Rα, Rα)

G̃ε(Rα, Rα) = lim
r,r′→Rα

Gε(r, r′).
(5)

This form corresponds to the Koster–Slater approximation [21]. The resulting Green’s
function for the ensemble of non-overlapping short-range impurities in the alloy is

Gε(r, r′) = Gε(r, r′) − u0

∑
α

Gε(r, Rα)Gε(Rα, r′)

1 + u0G̃ε(Rα, Rα)
. (6)

Note that the Green’s functions in equation (6) take the alloy’s inhomogeneity into account
exactly.

The general form for the density of states is

2

V
Im

∫
dr 〈Gε(r, r)〉|ε→E+i0

whereV is the normalizing volume. Therefore the contribution of the impurities to the
density of states is

δρim(E) = −2u0

πV
Im

∫
dr

〈∑
α

Gε(r, Rα)Gε(Rα, r)

1 + u0G̃ε(Rα, Rα)

〉
ε→E+i0

. (7)

Here 〈· · ·〉 means an average over the alloy’s composition inhomogeneity. With the use of
the exact expression forGε(r, r′) we obtain∫

dr Gε(r, Rα)Gε(Rα, r) = d

dε
G̃ε(Rα, Rα). (8)

Therefore equation (7) can be transformed into

δρim(E) = − 2

πV
Im

d

dε

〈∑
α

ln[1 + u0G̃ε(Rα, Rα)]

〉
ε→E+i0

. (9)

In this way the impurity density of states is expressed in terms of the exact Green’s function
of the electrons in the inhomogeneous alloy, given by equation (3).

For the case of the homogeneous alloy we may substitute the free Green’s function
gε(r, r′) into the expression forδρim. After computation of the simple integrals we may
expressu0gε(Rα, Rα) in terms of the 3D density of statesg(E). The result, proportional
to the centre concentrationnim, can be written as

δρim(E) = −nim

π

d

dε
ln

[
1 + u0g(ξm) − u0

2
πg(|E|) + i0

]
= nimδ(E0 − E). (10)

Here the energy of the levelE0 is determined by the equation

1 + u0g(ξm) = u0
π

2
g(|E0|). (11)

Hereξm = (h̄/a)2/2m is the ‘cutting’ energy. The impurity levels near the conduction-band
bottom exist in this approximation only if|u0|g(ξm) is of unity order.
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3. The case of short-range inhomogeneities

The perturbation operator, linear in the alloy inhomogeneitiesδr, for the short-range case
in equation (1),δH (sr)

r , is

δH (sr)
r = − α

2m
(p · δrp) + 1εc δr. (12)

Here α and 1εc determine the rates of change of the effective mass and the conduction-
band-bottom energy with the change of composition. The contribution of the first term in
equation (12) can be estimated asδ̄α(h̄/r0)

2/2m (δ̄ is the average composition variance),
while the energy1εc is of the order of the gap width. That is why the contribution of the
kinetic energy inhomogeneities to equation (12) can be neglected, and the Green’s function
of the alloy can be expressed in terms of the ordinary path integral [22]:

Gε(r, r′) = i

h̄

∫ ∞

0
dt exp

(
i

h̄
εt

) ∫ xt=r

x0=r′
D{xτ } exp

[
i

h̄

∫ t

0
dτ

(
mẋ2

τ

2
− 1εc δxτ

)]
. (13)

After factoring out the inhomogeneous contribution to equation (13):

δGε(r, r′) = Gε(r, r′) − 〈Gε(r, r′)〉 (14)

we can rewrite the average in equation (9) as〈∑
α

ln[1 + u0G̃ε(Rα, Rα)]

〉

' nim

(
ln[1 + u0〈Gε(r, r′)〉]|r,r′→R − u2

0

2

〈δGε(r, r′) δGε(r, r′)〉
[1 + u0〈Gε(r, r′)〉]2

∣∣∣∣
r,r′→R

)
.

(15)

The second term here corresponds to the small contribution to the density of states, estimated
in the appendix. Thereforeδρim can be expressed using the average Green’s function
equation (13) in the form

δρim(E) = −2nim

π
Im

d

dε
ln[1 + u0〈Gε(r, r′)〉]|ε→E+i0;r,r′→R + 1ρ

(1)
im (E). (16)

In order to calculate the average Green’s function〈Gε〉 in equation (16) we use the
common framework of [23–25] and the Gaussian correlator〈δr, δr′ 〉 = δ̄2W(|r − r′|) with
the correlation lengthlc. Finally equation (13) can be rewritten as

〈Gε(r, r′)〉 = i

h̄

∫ ∞

0
dt exp

(
i

h̄
εt

) ∫ xt=r

x0=r′
D{xτ } exp

[
i

h̄

∫ t

0
dτ

mẋ2
τ

2

− (δ̄ 1εc)
2

2h̄2

∫ t

0
dτ1

∫ t

0
dτ2 W(|xτ1 − xτ2|)

]
. (17)

In the case wherelc → 0 the main contribution from the inhomogeneous potential is
determined by the close timesτ1 andτ2, so the expansion|xτ1 −xτ2| ' |ẋτ1||τ1 −τ2| can be
used inW(|xτ1 − xτ2|). After carrying out the integration overτ1 − τ2 taking into account
the translation invariance of〈Gε〉, we examine the function

J1r(E) = lim
ε→E+i0

〈Gε(r, r′)〉 1r = |r − r′|. (18)
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The expression for this function takes the form

J1r(E) = i

h̄

∫ ∞

0
dt exp

(
i

h̄
Et

) ∫ xt=1r

x0=0
D{xτ } exp

[
i

h̄

∫ t

0
dτ

mẋ2
τ

2

− √
π

δ̄2lc 1ε2
c

2h̄2

∫ t

0

dτ

|ẋτ |
]

. (19)

Because the contribution from the slow path (when|ẋτ | is small) is damped rapidly, and
the contribution of the fast path (when the velocity|ẋτ | is high) is small due to the rapid
oscillations of the kinetic energy, equation (19) can be computed within the optimal-path
method [25]. After factoring out the direct-line contribution to equation (19),1r τ/t , we
can write the optimal path as a circle with radiusR (see e.g. [24]). If we examine this
circle in theXOY plane, thenRτ = R(cos(2πτ/t) − 1, sin(2πτ/t), 0) and the exponent in
equation (19) contains contributions from factors of the following type:

Q(R) = i

h̄

[
m 1r2

2t
+ m(2πR)2

2t
− √

π
δ̄2lc

2h̄

(1εc t)2

2πR

]
. (20)

The optimal-path radius is determined by the conditionQ′(Rc) = 0. Therefore the main
contribution to the exponent in equation (19) contains

Q(Rc) = i

h̄

m 1r2

2t
− i e−iπ/6 3t

2h̄2

Ū4/3

E
1/3
c

. (21)

Here the characteristic energȳU = δ̄ 1εc and the energy, corresponding to the characteristic
length lc, Ec = (h̄/ lc)

2/2m, is introduced. The energȳU determines the order of the
inhomogeneities of the potential energyUr.

The estimation of the contribution from the paths close to the optimal one can be
performed like in [24]. After neglecting these small terms, we can rewrite equation (18) in
the form

J1r(E) = i

h̄

∫ ∞

0
dt

(
m

2πh̄it

)3/2

exp

[
im 1r2

2h̄t
+ i

h̄
(E + γ /

√
3)t − γ t

h̄

]
. (22)

Here the characteristic energy for the level broadening,γ , is introduced as

γ = π1/3 3
√

3

8

Ū4/3

E
1/3
c

. (23)

The integral over time in equation (22) can be calculated exactly. With account taken of
the energyξm being very large in comparison with all of the other energies being examined,
we get

J1r(E) ' g(ξm) − π

2
g

(
−E − γ√

3
− iγ

)
. (24)

Therefore the energy density of the impurity level can be written as

δρim(E) = −2nim

π
Im

d

dε
ln[1 + u0J1r(ε)]. (25)

Taking into consideration the energy of the non-disturbed levelE0 from equation (11),
we finally transform equation (25) into the expression

δρim(E) = 2nim

π

γ

(Ẽ0 − E)2 + γ 2
whereẼ0 = E0 + γ√

3
. (26)
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Therefore the deep level in the short-range case is described by a broadened Lorentz-like
peak, shifted with respect to the initial level positionE0. Note, that the broadening and
shift of the level in the alloy in this case are described by the same characteristic energy,γ .

The shift of the level obtained is to be compared with the shift of the conduction-band
bottom due to the short-range inhomogeneities. The density of the continuous spectrum
states can be obtained from the self-consistent Dyson equation (see e.g. [23]). We get the
approximate form

1Ec = 1ε2
c W(0)

∫
εp<Ec

dp

(2πh̄)2
(εp − ε)−1 ' Ū2

2
√

πEc

. (27)

Taking account of the smallness oflc, we get for this caseγ � 1Ec. This means that
the shift and broadening of the defect level are large in comparison with the shift of the
conduction-band bottom.

4. The case of long-range inhomogeneities

In the case of inhomogeneities with long-range (lr) disorder (in comparison with the
localized-state radius), the operator of the perturbation,δH

(lr)

Rr , can be written in the vicinity
of the impurity (the pointR) as the expansion

δH
(lr)

Rr = UR +
∑

α

∇αUR rα + 1

2

∑
αβ

(∇α∇βUR)rαrβ. (28)

The contribution of the kinetic energy inhomogeneities is here small for the same reasons
as were discussed in the previous section. With the use of equation (28) we can express
the Green’s function for the centre examined in terms of the path integral

GεR(r, r′) = i

h̄

∫ ∞

0
dt exp

(
i

h̄
εt

) ∫ xt=r

x0=r′
D{xτ } exp

[
i

h̄

∫ t

0
dτ

(
mẋ2

2
− δH

(lr)

Rxτ

)]
.

(29)

After substituting this equation into the general expression for the density of states (9), we
can get for the case of non-overlapping centres with the concentrationnim

δρim(E) = −2nim

π
Im

d

dε

〈
ln[1 + u0J1r,R(ε)]

〉∣∣
ε→E+i0 . (30)

HereJ1r,R(ε) = GεR(r, r′)||r−r′|→1r, and the average is now calculated over the random
potential energyUR.

To exclude the terms in the exponent of equation (29) that are linear in the pathxτ , we
make the substitutionxτ → uτ + sτ . Heresτ is the new variable for the path integration,
and theuτ -function corresponds to the equation

üα
τ +

∑
β

∇α∇βUR uβ
τ = −∇αUR

m
(31)

with the boundary conditionsuτ=0 = 0 anduτ=t = 1r. ThereforeJ1r,R(E) can be written
in terms of the path integral:

J1r,R(E) = i

h̄

∫ ∞

0
dt exp

(
i

h̄

∫
dτ

[
ε − UR − 1

2
(∇UR · uτ )

])
×

∮
D{sτ } exp

(
i

h̄

∫ t

0
dτ

[
mṡ2

τ

2
− UR − m

2

∑
αβ

(∇α∇βUR)sα
τ sβ

τ

])
. (32)
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This integral can be calculated by expanding the pathsτ into a Fourier series in the time
interval (0, t). The characteristic frequenciesω1,2,3 of the symmetric quadratic form in the
exponent are determined by the equation

det‖∇α∇βUR − ω2δα,β‖ = 0. (33)

The computation of the Gaussian path integrals in equation (32) is carried out within the
standard framework. The result forJ1r,R(E) depends now not only on the potential energy
UR, but also on the random frequenciesω1,2,3 and random electric field∇UR as well:

J1r,R(E) = i

h̄

∫ ∞

0
dt

(
m

2πh̄it

)3/2

exp

(
i

h̄

[
t (ε − UR) + m 1r2

2t

])
× exp

[
− i

2h̄

∫ t

0
dτ ∇UR · uτ

] ∏
k=1−3

ωkt/2

sinωkt/2
. (34)

The case of largelc corresponds to small oscillator strength, so the second term in
equation (31) can now be neglected, and its solution can be written in the simple form
uτ = (∇UR/2m)τ(t −τ). After substituting this solution into equation (34) and integrating
over dτ , taking into account the smallness of the frequenciesω1,2,3, determined from
equation (33), we get

J1r,R(ε) ' i

h̄

∫ ∞

0
dt

(
m

2πh̄it

)3/2

exp

(
i

h̄

[
t (ε − UR) + m 1r2

2t

])
× exp

(
− it3(∇UR)2

24mh̄

)[
1 + t2

24
(ω2

1 + ω2
2 + ω2

3)

]
. (35)

This integral can be calculated for the characteristic energies of orderE0. Later we use the
estimation of the characteristic times contributing to the integral as ¯h/E0, and we assume
that |∇UR| ' Ū/ lc. Therefore the estimation forω1,2,3 from equation (33) yields(

ωktm

2

)2

∼ EcŪ

2E2
0

� 1 Ec = (h̄/ lc)
2

2m
. (36)

Here tm is the characteristic time of order ¯h/E0. Taking account of the large magnitude of
lc, after taking into consideration the inequalitȳU � E0, we get

EcŪ
2

12E3
0

� 1. (37)

After substituting all of these inequalities into equation (35), we can integrate it within the
standard method of [22]. This gives

J1r,R(ε) ' g(ξm) − π

2
g(|E| + UR). (38)

This expression differs from equation (10) only in the substitution of|E| + UR for |E|.
This yields

δρim(E) ' 2nim〈δ(|E0| + UR − E)〉. (39)

With the use of the standard technique of [24], we get the Gaussian form of the broadened
unshifted peak in the case of long-range inhomogeneities:

δρim = 2nim√
2πŪ

exp

(
−

[
E0 − E√

2Ū

]2)
. (40)

Note that the dependences of the level broadening on the energyŪ differ substantially
in the two limiting cases of the short-range and long-range inhomogeneities. The shape of
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the peak also differs substantially, being Lorentz-like in the first case and Gaussian in the
second.

5. Discussion

In this work we have examined the influence of the semiconductor alloy composition
inhomogeneities on donor states, localized near short-range defects. It has been shown that
the mechanism of the defect line broadening in non-uniform alloys is essentially different
in the two limiting cases of the correlation lengthlc of the alloy inhomogeneity1x being
much greater and much smaller than the localized-state radiusr0 (short- and long-range
inhomogeneities). In the case of long-range inhomogeneities we obtain ordinary Gaussian
inhomogeneous broadening of the peak, caused by the band-edge energy variations. In
contrast, as was shown in section 3 of this article, in the short-range case the random
electric fields cause a shift and broadening of the donor level (though the average fields
over the impurity volume are small).

The modification of the local density of states for the cases of short-range and long-
range inhomogeneities is described by equations (26) and (40) respectively. We can see that
the shape of the density peak transforms from Lorentz-like to Gaussian with the transition
from the case of short-range inhomogeneities to that of long-range inhomogeneities. The
half-width of the levels, described in these cases by equations (23) and (41) respectively,
depends on the parameters for the inhomogeneities (i.e. on the amplitudes and correlation
lengths of the inhomogeneities) and the characteristics of the centre in different ways.
Moreover, in the case of short-range inhomogeneities a level shift takes place, while there
is no such shift in the case of long-range inhomogeneities. Therefore the theory presented
predicts an essential difference between the behaviour of centres in alloys with long-range
inhomogeneities and that of centres in alloys with short-range inhomogeneities. However,
discrimination between these two cases can only be achieved with the use of experimental
data.

The centres in the alloys have been studied by photoelectrical and capacitance methods.
We note that in all work based on deep-level transient spectroscopy (DLTS) analysis,
the level shape is considered to be Gaussian (see [10]). On the other hand, the
accuracy of the photoelectrical examinations (see e.g. [12]) is not sufficient for discrim-
inating unambiguously between the Lorentz-like and Gaussian peaks. Therefore the most
appropriate method for discriminating between the two experimental situations is that of
examining the shifts of the donors in the alloys (these shifts are predicted above to occur
for short-range inhomogeneities only). The case of long-range inhomogeneities was thought
to be realized e.g. in GaAs1−xPx , in which the deep donor was studied in [14]. The ionization
energy for this level remained practically constant:E0 = 0.340 eV for the whole of the
direct-gap composition range. This corresponds to the valuer0 = 1.2 × 10−7 cm (see [6]).
The correlation lengthlc in this case should be greater thanr0. It was shown in [14] that
for x = 0, 4 (the region of direct-gap composition) the half-width of the level

√
2Ū is 30–

40 meV. Using the experimental value1εc = 1.3 eV, these values forσ can be obtained,
if δ̄ = 0.02–0.03. This value of the composition variance seems to be a very realistic
one. Moreover, from the simple binomial expression,δ̄2 ∼ x(1 − x)—see e.g. [8]. This
dependence was also obtained experimentally in [14]. We note that the same order of the
values for the half-width of the E3-like deep donor withE0 = 0.23 eV in GaAs0.86Sb0.14

was obtained in [10, 13], and for the half-width of the DX-related centres in silicon-doped
Al xGa1−xAs in [2]. In contrast, in [9] the positions of the deep radiation-induced donor
levels E1, E2, and E3 in AlxGa1−xAs were studied as functions of the Al fractionx. It
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was shown there that generally donors do not follow strictly the conduction-band shift, the
deviation being the greater, the deeper the centre. Therefore we can assume that the case
of short-range inhomogeneities was realized there.

We note in conclusion that our theory was worked out making the following assumptions:
(a) the effective-mass approximation; (b) the zero-radius potential model for the defect
centres; (c) a small concentration of defects (the effect of overlap was neglected); (d) a
Gaussian distribution of the composition inhomogeneities; (e) the optimal-path method
can be used for the case of short-range inhomogeneities. However, we get a good
correspondence of our numerical estimates for the two cases of long-range and short-range
inhomogeneities with the experimental data for realistic values of the average variance and
correlation length. Comparison with the available experimental data shows that these two
cases can be realized in practice. This should be taken into consideration for the rigorous
analysis of the DLTS data (not only the Gaussian, but also the Lorentz-like shape of the peak
should be used to reconstruct the form of the signal properly). Generally the expressions
obtained for the additional defect density of states in semiconductor alloys with non-uniform
compositions can be widely used in the analysis of the various experimental data.

Appendix

The additional term in equation (16) can be rewritten as

1ρ1
im(E) = u2

0

π
nim Im

d

dε

〈Gε(r, r′)Gε(r, r′)〉 − 〈Gε(r, r′)〉2

[1 + u0〈Gε(r, r′)〉]2

∣∣∣∣
ε→E+i0;r,r′→0

. (A1)

Now we should estimate the difference in the numerator of the right-hand part of equation
(A1). Using the standard procedure, followed in section 3 of this paper, in analogy with
equation (17) we get

〈Gε(r, r′)Gε(r, r′)〉 = − 1

h̄2

∫ ∞

0
dt1

∫ ∞

0
dt2 exp

(
i

h̄
ε(t1 + t2)

)
×

∫ xt1=r

x0=r′
D{xτ1}

∫ yt2=r

y0=r′
D{yτ2} exp

{
i

h̄

∫ t1

0
dτ1

mẋ2
τ1

2
+ i

h̄

∫ t2

0
dτ2

mẏ2
τ2

2

− (δ̄ 1εc)
2

2h̄2

[∫ t1

0
dτ1

∫ t1

0
dτ2 W(|xτ1 − xτ2|)

+
∫ t2

0
dτ1

∫ t2

0
dτ2 W(|yτ1 − yτ2|) + 2

∫ t1

0
dτ1

∫ t2

0
dτ2 W(|xτ1 − yτ2|)

] }
.

(A2)

This expression differs from that of〈Gε(r, r′)〉2 only in the last contribution in the exponent.
This term can be computed by analogy with equations (19)–(21), using the circular optimal
pathsRτ1,2 = R1,2(cos(2πτ1,2/t1,2) − 1, sin(2πτ1,2/t1,2), 0). After substituting these paths
into the last correlator in (A2), we can estimate their contribution to the exponent as

−
(

Ū tc

h̄

)2

exp

[
−

(
R(tc)

lc

)2
]

. (A3)

The characteristic timetc is here determined by the scale of the energies under examination.
The characteristic path radiusR(tc) is determined by equation (20) for timest1,2 of order
tc. Generally there are three scales of time for this problem: (a) the shortest time ¯h/ξm,
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corresponding to the large energy of ‘cutting’; (b) the medium time ¯h/E0, corresponding to
the energy of the defect level; and (c) the longest time ¯h/γ , corresponding to the damping
of the level. For case (a) (short times) a value of order unity appears as the exponent in
equation (A3), but the pre-exponential factor is small due to the large magnitude ofξm, and
therefore the whole of equation (A3) is small. In case (b) the pre-exponential factor can be
of unity order, but the exponent is small. The smallness of equation (A3) in case (c) needs
the additional inequalitiesEc � E0 (the case of short-range inhomogeneities), andE0 � Ū

(no deep fluctuations of the potential). If these additional conditions are fulfilled, then the
contribution (A3) is always small, and therefore the additional term in equation (16) can be
neglected.
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